allpar, the Chrysler - Dodge - Plymouth - Jeep site

The Dodge Truck V10 Engine (1994-2003)

The V10 had the highest torque and horsepower, with the broadest usable torque curve (1,000 - 4,000 rpm) of any large gas engine in the field, when introduced. Dodge wrote, “It gives the new Ram pickup the ability to outrun all other trucks in its class with manual or automatic transmissions whether unloaded, loaded, or pulling a trailer.”

Dodge Ram V10

The bore size was identical to the 360, to cut tooling costs (and probably development time). The direct ignition and crankshaft mounted oil pump reduced its overall size, so it was just 4 inches longer than the 360 despite having one third more displacement.

The V10 had a returnless fuel injection system, rare for the time; most systems sent fuel up the engine bay and then had another line returning the excess. Fuel injectors operated in pairs, injecting half of their fuel during the intake stroke of each cylinder and half at another time. A two­barrel side draft throttle body had a stepper motor air by-pass valve for idle speed control.

Direct (distributorless) ignition system (DIS), rare for the time, helped in acceleration, quick starts, idle quality, and engine simplification, cut the overall engine length, and eliminated ignition timing from maintenance. The V10 was designed for DIS, which requires no distributor, distributor cap, rotor, coil lead nor distributor drive, making it simpler and smaller. The smooth idle came from precise timing control because there was no series of mechanical parts subject to variation; and response times were faster because the powertrain computer got more frequent updates than with a distributor system.

ram ambulance
Warren Swaney wrote: This 2000 Dodge Ram 3500 4x4 is still in service [in 2008]
with Duck Mountain Ambulance of Kamsack Saskatchewan.
It is powered by a V-10 gas engine and gets about 15-18 miles per gallon.

A crankshaft timing sensor and a camshaft reference sensor provided information to the computer. The crankshaft sensor was inserted through a hole in the side of the block, and sensed slots machined on the crankshaft pulse ring. The control module figured out crankshaft position and engine speed from this.

The camshaft sensor was on the front cover module, and sensed slots on the camshaft sprocket; the slots were coded for individual cylinder identification. This made starting quick by determining which spark plugs and fuel injectors to actuate.

Five high-energy ignition coils were mounted above the right cylinder head cover; each coil controlled two cylinders (every other spark was during the exhaust stroke and did no good, but also did no harm). The coils could fire large spark plug gaps consistently and had a rapid rise time to help fire fouled spark plugs.

viper v10 engineA Helmholtz resonator intake manifold was tuned to boost torque at 1700 and 3300 rpm. Long primary runners curved over the right cylinder bank to clear the hood. Resonance in the 25-inch primary runners enhanced low speed torque, with peak torque as low as 1200 rpm. Two plenum chambers supplied air to five runners each. Plenum chamber volume was tuned to resonate at 3300 rpm, broadening the torque curve. Passages across the longitudinal center of the manifold fed air from the throttle body to the plenum chambers.

Exhaust manifolds were made of high molybdenum ductile cast iron for durability. A special ribbed design helped control permanent dimensional changes which occured as a result of thermal cycling. Die-cast magnesium cylinder head covers reduced noise better and were lighter than aluminum while providing a better sealing surface than stamped steel.

The engine-mounted air cleaner element included an oil-wetted foam overlay to increase its dust capacity. The crankcase ventilation system used a fixed orifice instead of the more common variable-area PCV valve.

The pushrod-operated valve train was similar to the 5.2 and 5.9-liter V-8 engines, with 1.6:1 lift­ratio rocker arms on studs. Tappet bores in the block were aligned with the push rods to minimize pushrod wear, and reduce cold engine tappet noise by keeping air from being trapped. Roller-type hydraulic tappets were the same as used in "Magnum" V-8 engines. Sprockets for the chain-driven camshaft were powdered metal for uniformity and ease of manufacture.

Cast iron cylinder heads had machined top surfaces to provide smooth, uniform sealing surfaces for the cylinder head covers. For durability in heavy-duty service, the heads had high-nickel chromium exhaust valve seat inserts.

Cylinder Block

The block extended below the crankshaft for added strength and stiffness. The stiffness of this deep­skirt or "Y" block configuration helped minimize noise. Extensive research into past and present engine practices was used to determine that the deep-skirt block would be the simplest and most effective way to obtain the desired stiffness. This configuration also provided a continuous flat oil pan sealing surface to minimize potential leakage paths. Finite element analysis guided designers in providing the desired block strength and stiffness properties for this configuration.

Blocks were stress-relieved (annealed) before machining to aid in accurately controlling dimensions and to provide uniform-hardness cylinder walls for low piston and ring wear.

The rear face of the block had the same mounting configuration as the Cummins diesel engine with which it shares transmissions.

Oil pan and pump

Holes that allowed oil to return to the pan from the cylinder heads were placed so that oil flowed along the sides of the block to avoid power robbing "windage" - oil being picked up and thrown about by the crankshaft. The shallow portion of the bottom of the pan had longitudinal "U" channels that directed oil to the sump and minimize windage effects. The channels were l/ 4-in. deep in the center, directly under the crankshaft, and 3/ 4-in. deep along the sides where there was more clearance to the crankshaft. The formations in the bottom of the pan also stiffened to reduce drumming noise.

Oil pan capacity was 7 quarts to help keep oil temperature low during heavy duty operation. It had electro-coated paint to protect against corrosion.

A gerotor oil pump, mounted in the front cover module and driven directly by the crankshaft, contributed to the compactness of the engine. The engine was protected by a new full-quart capacity severe service oil filter exclusive to the VI0 engine. The filter had a patented filter media with a higher capacity to trap and hold contaminants than previously-known filters.

Pistons and Rods

Die-cast, all-aluminum pistons had a unique "moly" (molybdenum disulfide) coating baked onto the skirts to reduce friction. The coating was particularly effective during engine break-in, but with time the material became imbedded in the cylinder bore walls and continued to reduce friction. Forged steel connecting rods were the same as used on the 5.2-liter V-8 engine.

Crankshaft

The cast iron crankshaft had six main bearings. An alternate firing interval of 900 and 540 was established after extensive analysis work by an outside consultant. This interval balanced harmonic vibrations, minimized engine shake and provided a stable idle. A pulse ring adjacent to the # 3 main bearing had machined slots that provide timing information used by the DIS and fuel injection systems.

Sealing Features

Molded, radial-lip-type seals at both ends of the crankshaft provided better sealing than the more common multi-piece units. The oil pan had a flat, continuous gasket surface which provided excellent sealing. The oil pan and cylinder head covers had state-of-the-art silicone gaskets with steel back bones. The intake manifold had new end seals on which a patent is pending.

Front Cover Module

Camshaft chain and sprocket covering, oil pump and water pump functions were combined in a single cast aluminum front cover module. Oil passages from the oil pickup to the block galleries were cored into the cover. Coolant passages to the block water jackets were also cored into the cover.

The module was cast in a loose sand mold using a consumable Styrofoam® pattern instead of a removable wooden pattern in a compacted sand mold. Molten aluminum entering the mold displaced and vaporized the Styrofoam. While the vaporized Styrofoam was dispersing through the sand, it formed a wall of gas which supported the sand until the aluminum began to solidify. The gas wall kept the surfaces of the casting clean. The V-I0 front cover module was the first corporate use of this process.

Cooling System

A heavy-duty truck engine block cooling system and thermostat minimized low-temperature piston wear and oil consumption by allowing the cylinder walls to warm up gradually and expand uniformly. The truck-type thermostat opened in a smooth continuous manner because it had four times the working area of a passenger car thermostat. A conventional thermostat released bursts of chilled water during warm-up that distorted the cylinder walls and causeed wear and high oil consumption. The thermostat had a cylindrical valve element with an O-ring seal to assure smooth consistent operation. It was mounted in a molded plastic housing at the front of the engine.

The water pump was mounted on the front cover module and driven by the serpentine accessory drive belt. It had a curved-vane impeller of 40% glass-filled polyphenylene sulfide that required less power to drive than conventional impellers. It also was better balanced than previous stamped impellers.

Accessory Drive

Accessories were driven by a multi-ribbed serpentine belt that had a torsional automatic tensioner like that used on the 5.9-liter V-8 engine. Accessory locations were the same with and without air conditioning. When air conditioning was added, a longer belt was used.

 

We are not responsible for the consequences of actions taken based on this site, and make no guarantees regarding validity, accuracy, or applicability of information, predictions, or advice of any sort. Please read the terms of use and privacy policy. Copyright © 1994-2000, David Zatz; copyright © 2001-2014, Allpar LLC (except as noted, and press/publicity materials); all rights reserved. Dodge, Jeep, Chrysler, Ram, Plymouth, and Mopar are trademarks of Fiat Chrysler Automobiles.