Cars by name
Trucks and Jeeps

Engines / Trans
Repairs / Fixes
Tests and Reviews

Chrysler Fuel Cell Vehicles

See also: hybrid-electric Intrepid ESX | turbine engines | technology

fuel cell explanation

Most of the information here was provided by Chrysler. It has been collected and intensely edited.

The development of the on-board gasoline processing system was announced in 1998 by Bernard Robertson, Chrysler's vice president of vehicle engineering. Robertson said Chrysler's advancement in on-board fuel processing technology is significant because it addresses the fuel cell's most significant challenge - the lack of an infrastructure to supply hydrogen, the gas used in fuel cells to generate electricity. (A fuel cell produces electricity directly from a chemical reaction between hydrogen and oxygen. They are stacked in series to produce sufficient electricity.)

"We believe hydrogen needs to be processed from gasoline on-board vehicles because hydrogen isn't a practical fuel choice today - simply put, there's not any filling stations supplying it to a mass market," Robertson said.

In addition, Robertson said storing hydrogen on-board vehicles has been a challenge. "Hydrogen simply takes up a lot of space, you can't store it on-board a vehicle like you can gasoline without a lot of added cost. By developing an on-board fuel processor, we're being very pragmatic by trying to adapt technology to meet consumers' needs, not the other way around. In time, we think development of this processor will help open the door to the use of fuel cells as the primary power source in a series hybrid vehicle that meets consumer demands for range and performance."

Fuel cells, used extensively on space craft, have potential because they can produce electrical energy at ambient temperatures with virtually zero emissions, according to Christopher E. Borroni-Bird, Ph.D., advanced technologies specialist at Chrysler.

"They can deliver the same range as conventional gasoline-powered vehicles and could significantly improve fuel economy," he added.

Chrysler's goal is a fuel-cell system in which the fuel tank, fuel processing components, fuel cell, batteries and electric propulsion motor are all packaged in a mid-sized sedan.

The Chrysler fuel processing technology essentially converts gasoline into hydrogen, carbon dioxide (CO2) and water (H2O) in a multi-stage chemical reaction process. "Any fuel - gasoline, diesel fuel, methane, alcohol, etc. - is a likely candidate," observed Borroni-Bird, "because the processor burns anything. All fuels burn by definition."

The approach is based on existing technologies, he added. For example, partial oxidation, one of the stages of the process, is common in the oil refining industry.

Chrysler worked with Arthur D. Little, an international research consulting firm, and the U.S. Department of Energy in refining the process and developing operating hardware. The next step is to develop working models of a complete system to prove its feasibility.

The basic steps:

Chrysler fuel cell

fuel cell display

Fuel cell advantages

Fuel cells have excellent potential as the power source of the future:

The promise of near-zero emissions, up to 80-mpg fuel economy, good performance and rapid refueling mean fuel cells are worth the research and development investment, according to Christopher E. Borroni-Bird, Ph.D., advanced technologies specialist at Chrysler Corporation.

There may be a spark plug to change and a filter for removing sulfur impurities may need replacing, but there won't be any oil to change and few moving parts to check or adjust.

Power will come from a stack of fuel cells energizing electric motors driving the rear wheels. Since the fuel cell stack is modular, it can be configured into a wide array of shapes to fit available on-board space.

One possible configuration is a stack that is eight-inches in diameter and five-feet long in a tunnel down the center of the vehicle, similar to the drive shaft tunnel in a rear-wheel drive vehicle.

Because of the improved efficiency of the fuel cell, the fuel tank will be smaller than today's 18- to 20-gallon tank. And, because of the flexibility of Chrysler's on-board fuel processor, virtually any available fuel can be used.

Unlike batteries, fuel cells and the fuel processor generate some heat and this heat can be captured and used to warm the passenger cabin.

Component Locations

The fuel tank will be in the rear of the vehicle just as it is today, along with the battery packs and motor controller. The batteries probably will occupy several cubic feet, while the controller will be comparable in size to a large suitcase, but there will still be plenty of trunk space for storage.

The fuel processing system components will be located under the hood. They will consist of:

The system may include an exhaust for the byproducts: non-polluting carbon dioxide, nitrogen and water, much of which will be reused in the reforming process.


Cost reduction is the major challenge facing fuel cells, according to Chrysler Advanced Technologies Specialist Christopher E. Borroni-Bird, Ph.D.

"Ten years ago, fuel cells were 1,000 times too expensive and now they're about ten times too costly," explained Borroni-Bird. "That means if $3,000 is our cost bogey for a powertrain system, a fuel cell system is running at about $30,000 - and that's obviously still far too expensive."

Borroni-Bird explained that mass-produced fuel cells would cost more than $200/kW, using today's production techniques. Conventional powertrain costs are under $30/kW today.

However, according to Borroni-Bird, industry research has focused on reducing the costs associated with the modules that make up a fuel cell stack - i.e. platinum catalysts, the membrane electrolyte and bipolar plates. The result has been a sixty-fold reduction in the platinum content of a standard fuel cell module since 1984.

Fuel cell vehicle: Chrysler Natrium

This article was published in April 2003.

The Chrysler Town & Country Natrium, a fuel-cell concept vehicle running on clean, nonflammable, and recyclable sodium borohydride fuel, will participate in a ride-and-drive display program at the Pentagon at the request of acting Secretary of the Navy. This program takes place on April 21 part of Earth Day celebrations and is an opportunity for top military officials to experience the advantages of the Chrysler Natrium fuel-cell vehicle.

The Natrium is the first fuel-cell powered vehicle built to operate on sodium borohydride, a fuel made from borax which is a mineral available in abundant supply in the Western United States. In the Natrium minivan, this technology delivers the environmental benefits of a fuel-cell vehicle without the loss of cargo or passenger space, while providing a range of 300 miles, longer than any other fuel-cell vehicle. Hydrogen is extracted from sodium borohydride to power the fuel cell. Sodium borohydride is a compound chemically related to borax, the naturally-occurring substance commonly used in laundry soap.

"Chrysler ... has a long and proud history of supporting our national defense efforts," said Bernard Robertson, Senior Vice President, Research and Regulatory Affairs.  "This unique technology could have great benefits for the military: in particular, it is nonflammable, greatly improving safety in battle zones, and the main ingredient can be transported as a dry powder, dramatically reducing the enormous logistical demands of fueling our military in advanced battle settings. In addition, the greater fleet fuel efficiency would greatly reduce the amount of fuel used by our armed forces--fuel that can cost hundreds of dollars per gallon to deliver to the battlefield. And this technology produces zero smog-forming and greenhouse gases, contributing to a cleaner environment. Finally, sodium borohydride has the potential to reduce or eliminate our dependence on oil for our transportation needs."

The U.S. armed forces have expressed interest in alternative-fuel vehicles in order to stretch the military's mobility into the future with improved fuel economy and range. Benefits include a decreased dependency on oil which significantly decreases cost of operation and increases the range and reach of individual task forces.

Current status

This project was ended as soon as Daimler took over; whether this was because it was not viable or because it was not invented in Germany is a matter of speculation.

New future for minivans, big cars (updated)

Mopar Makes Towing with the Jeep Gladiator Safer

Ram out-pickups Chevy, Challenger #1?, and other Q3 takeaways

More Mopar Car
and Truck News